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Abstract

The chaotic behavior of Van der Pol–Mathieu–Duffing oscillator under bounded noise is investigated. By using random

Melnikov technique, a mean square criterion is used to detect the necessary conditions for chaotic motion of this stochastic

system. The results show that the threshold of bounded noise amplitude for the onset of chaos in this system increases as

the intensity of the noise in frequency increases, which is further verified by the maximal Lyapunov exponents of the

system. The effect of bounded noise on Poincaré map is also investigated, in addition the numerical simulation of the

maximal Lyapunov exponents.

r 2007 Published by Elsevier Ltd.
1. Introduction

Parametric excitation nonlinear dynamic system with Van der Pol dampling and Duffing restoring force has
been focused on in recently [1], the system is extensively applied in representing plenty of engineering structure.
It is very important and useful to study the nonlinear dynamical behaviors of this system. In this paper, it
would be interesting to consider the following Van der Pol–Mathieu–Duffing stochastic differential equation

€x� o2
0xþ �½ðm� ax2Þ _xþ gx cosðO1tÞ� þ bx3 ¼ �sxxðtÞ, (1)

where b40 is nonlinear term, g and O1 are intensity and frequency of the periodic coefficient, respectively. x(t)
is a bounded noise to be described in Section 2. In Ref. [1], the two times asymptotic bifurcation of the
parametric excitation nonlinear system under principal parametric resonance with Van der Pol dampling and
Duffing restoring force has been studied. The behavior of deterministic Mathieu–Duffing system has been
investigated extensively by many researchers. For instance, Luo [2,3] in 2003 investigated Mathieu–Duffing
oscillator with a twin-well potential, in his work, the approximate criteria for the onset and destruction of a
specified, primary resonant band of the Mathieu–Duffing oscillator was developed. Leslie Ng et al. [4,5]
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investigated the Mathieu equation to which is added a cubic nonlinearity x3 term using averaging method.
However, all above work is due to a deterministic Mathieu–Duffing oscillator.

For stochastic Mathieu–Duffing oscillator, the present paper author investigated the maximal Lyapunov
exponent and almost-sure stability by using multiple scales method in Ref. [6]. Liu et al. have studied the
chaotic motion of Duffing oscillator under bounded noise parametric excitation by using stochastic Melnikov
method in Ref. [7]. Chunbiao Gan has studied the noise-induced chaos and discuss the effect of noises on
erosion of safe basin in the softening Duffing oscillator in Ref. [8].

In this paper, the chaotic motion of Van der Pol–Mathieu–Duffing system under bounded noise excitation is
investigated by using stochastic Melnikov method. The Melnikov method was first applied by Holmes [9] to
study a periodically forced Duffing oscillator with negative linear stiffness. Melnikov method was extended to
study stochastic dynamical system by Frey and Simiu [10].

2. Bounded noise

A harmonic function with constant amplitude and random frequency and phases is called bounded noise,
which can be expressed by mathematical presentation as [7]

xðtÞ ¼ s cosðO2tþ cÞ; c ¼ dBðtÞ þ G, (2)

where O2 and d are positive constants, B(t) is a standard Wiener process, G is a random variable uniformly
distribution in [0,2p). x(t) is a stationary random process in wide sense with zero mean. Its covariance
function is

CxðtÞ ¼
s2

2
exp �

d2jtj
2

� �
cosðO2tÞ (3)

and its spectral density is

SxðoÞ ¼
ðsdÞ2

2p
1

4ðo� O2Þ
2
þ d4
þ

1

4ðoþ O2Þ
2
þ d4

� �
. (4)

The variance of the bounded noise is

Cð0Þ ¼
s2

2
(5)

which implies that the bounded noise has finite power. The shape of spectral density depends on O2 and d,
while the bandwidth of the bounded noise mainly depends on d. It is a narrow-band process when d is small. It
is easy to see that the sample function of the bounded noise is continuous and bounded which are required in
the derivation of Melnikov function [7].

3. Random Melnikov technique

For e ¼ 0, Eq. (1) is regarded as an unperturbed system and can be written as

_x ¼ y,

_y ¼ o2
0x� bx3. ð6Þ

The system (6) is a Hamiltonian system with Hamiltonian function

Hðx; yÞ ¼
1

2
y2 � o2

0x2 þ
1

2
bx4

� �
(7)

and the potential function is

V ðx; yÞ ¼
1

2
�o2

0x
2 þ

1

2
bx4

� �
. (8)
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Through the analysis of system (6), one can see that there are three equilibrium points. P0(0,0) being
hyperbolic saddle, which be connected by two homoclinic orbits

x0ðtÞ ¼ �
ffiffiffiffiffiffiffiffi
2=b

p
o0 sechðo0tÞ; y0ðtÞ ¼ �

ffiffiffiffiffiffiffiffi
2=b

p
o0 sechðo0tÞtanhðo0tÞ. (9)

P1

ffiffiffiffiffiffiffiffi
2=b

p
o0; 0

� �
and P2 �

ffiffiffiffiffiffiffiffi
2=b

p
o0; 0

� �
being centers as shown in Fig. 1(a), the potential function of the

system (6) are shown in Fig. 1(b) when o0 ¼ 1.0, b ¼ 0.5.
Now let us apply the random Melnikov technique to study Van der Pol–Mathieu–Duffing system under

bounded noise excitation, the motion of the system (1) is of the form

_x ¼ y,

_y ¼ o2
0x� bx3 � �½ðm� ax2Þyþ gx cosðO1tÞ � sx cosðO2tþ cÞ�. ð10Þ

The random Melnikov process for system (10) can be obtained by using formula given by Wiggins in
Ref. [11] as follows:

Mðt0Þ ¼

Z 1
�1

�ðm� ax2
0ðtÞÞy

2
0ðtÞdt�

Z 1
�1

gx0ðtÞy0ðtÞ cos ðO1tÞdtþ

Z 1
�1

sx0ðtÞy0ðtÞxðtþ t0Þdt

¼
16ao3

0 � 20bmo0

15b2
þ Zðt0Þ ¼ I þ Zðt0Þ, ð11Þ

where

I ¼ ð16ao3
0 � 20bmo0Þ=15b

2 (12)

and

Zðt0Þ ¼

Z 1
�1

sx0ðtÞy0ðtÞxðtþ t0Þdt. (13)

The first two integrals in Eq. (11) represent the mean of the Melnikov process due to damping force and
periodic parametric excitation, and the last integral denotes the random portion of the Melnikov process due
to bounded noise x(t).

Consider the mean of random process E[x(t)] is zero, one can get

E½Mðt0Þ� ¼ ð16ao3
0 � 20bmo0Þ=15b

2, (14)

where E[ � ] is an expectation operator. Eq. (14) gives a constant. That is to say in mean sense chaos never
occurs in system (1). Now, let us consider if random Melnikov process (11) has simple zeros in mean-square
sense. In this case, the impulse response function is

hðtÞ ¼ x0ðtÞy0ðtÞ ¼ �
2o2

0

b
sech2ðo0tÞ tanhðo0tÞ (15)
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Fig. 1. Phase portrait and potential of system (6) for o0 ¼ 1.0, b ¼ 0.5: (a) phase portrait and (b) potential.
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Fig. 2. The relation between d and threshold s ((—) analytic result, and (– – –) numerical result).
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and the associated frequency response function is

HðoÞ ¼
Z 1
�1

hðtÞ e�jot dt ¼ jpo2cschðpo=4o0Þsechðpo=4o0Þ=2b. (16)

The variance of Z(t0) as the output of the system can be expressed as follows:

s2Z ¼
Z 1
�1

jHðoÞj2SxðoÞdo. (17)

The criterion for possible chaotic motion based on Melnikov process is performed in mean-square
representation I2 ¼ s2Z, i.e.

ð16ao3
0=15b

2
� 4mo0=3b

2
Þ

¼

Z þ1
�1

½jpo2cschðpo=4o0Þsechðpo=4o0Þ=2b�2
ðsdÞ2

2p
1

4ðo� O2Þ
2
þ d4
þ

1

4ðoþ O2Þ
2
þ d4

� �
do. ð18Þ

The integral in Eq. (18) can be calculated by numerical method. For the following parameter values:
o0 ¼ 1.0, m ¼ 3.0, a ¼ 0.1, b ¼ 1.0, O1 ¼ O2 ¼ 2.0, one can get the threshold of bounded noise amplitude for
onset of chaos in system (10) by numerical computation, which is shown in Fig. 2.

4. Numerical calculation

4.1. The largest Lyapunov exponent

The Lyapunov exponents characterize the asymptotic rate of exponential convergence or divergence of
nearby orbits in phase space. Exponential divergence of nearby orbits implies that the behavior of a dynamical
system is sensitive to initial conditions. A dynamical system with a positive largest Lyapunov exponent is
usually a sign of chaos. To check the threshold of bounded noise amplitude for the onset of possible chaos, the
largest Lyapunov exponent of system (1) is also calculated by the algorithm advanced by Wolf et al. [12]. For
the following parameter values: o0 ¼ 1.0, e ¼ 0.1, m ¼ 3.0 a ¼ 0.1, g ¼ 6.0, O1 ¼ 2.0, b ¼ 1.0, O2 ¼ 2.0, the
chaotic responses and the largest Lyapunov exponent of system (1) versus bounded noise amplitudes are
shown in Fig. 3(a)–(d) for some different noise intensity values.

From Fig. 3, one can see that in the absence of noise and o0:O1:O2 ¼ 1:2:2, the motion of the system (1) is
chaotic for small noise amplitude, and noise amplitudes beyond the threshold value. Thus, there are many
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Fig. 3. The largest Lyapunov exponents of system (1) for different noise intensity values: (a) largest Lyapunov exponent (d ¼ 0);

(b) largest Lyapunov exponent (d ¼ 0.1); (c) largest Lyapunov exponent (d ¼ 1.0); and (d) largest Lyapunov exponent (d ¼ 3.0).
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intervals, in which l becomes positive again and the response is periodic, by the increasing of noise amplitudes
the motion of the system (1) is stable.

It is also seen from Fig. 3 that for the smaller noise intensity, i.e., d-0, the threshold s for the onset of
chaos decreases as the noise intensity d increases.

4.2. Poincaré maps

Now we investigate system (1) by using its Poincaré maps. The Poincare map is defined as follows:

P : S! S; S ¼ fðxðtÞ; _xðtÞÞjt ¼ 0; 2p=O2; 4p=O2; . . .g � R2.

One hundred initial points are randomly chosen on the phase plane. For each initial point, after deleting the
first 500 transients, the succeeded 1500 iteration points are plotted by using fourth-order Rutter–Kutter
method solving Eq. (1). From Fig. 3 we can see that the system (1) is chaotic motion for o0 ¼ 1.0, e ¼ 0.1,
m ¼ 3.0 a ¼ 0.1, g ¼ 6.0, O1 ¼ 2.0, b ¼ 1.0, O2 ¼ 2.0.
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Fig. 5. The chaotic response and Poincaré map of system (1) with s ¼ 3.0, d ¼ 0: (a) chaotic response; (b) phase portrait; and (c) Poincaré

map.

Fig. 4. The chaotic response and Poincaré map of system (1) with s ¼ 0, d ¼ 0: (a) chaotic response; (b) phase portrait; and (c) Poincaré

map.

Fig. 6. Chaotic responses and Poincaré map of system (1) with s ¼ 0.1, d ¼ 0.1: (a) chaotic response; (b) phase portrait; and (c) Poincaré

map.
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So these parameter values are selected for plotting the chaotic response and Poincaré map for some different
noise intensity values and the different amplitudes and the results are shown in from Fig. 4(a)–(c) to
Fig. 9(a)–(c).

From Figs. 4 and 5, one can see that in the absence of noise, the excitation is harmonic. For the trivial
excitation amplitude, the Poincaré map looks like a lying letter ‘S’ and the motion of the system is chaotic.
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While the noise amplitude increases to 3.0, the Poincaré maps are three points and the motion of the system is
periodic. It can also be verified by Fig. 3(a).

From Figs. 6 to 9, when the noise present in the system, one can see that for larger noise intensity, the
Poincaré maps diffuse larger in phase plane. And then increasing the noise amplitude s, the Poincaré maps
diffuse to a large area, which is the same as a ball in phase plane. In short, the chaotic attractors diffuse by
increasing the bounded noise.
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5. Conclusions

In the present paper, the chaotic behavior of Van der Pol–Mathieu–Duffing oscillator under bounded noise
is investigated in detail by the random Melnikov method with the associated mean-square criterion. The
results show that the bound noise can enhance the largest Lyapunov exponent and diffuse the chaotic
attractor. The chaotic motion of the Van der Pol–Mathieu–Duffing system can be enhanced by the bounded
noise, which is further verified by Poincaré map.
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